Определение 1. Пирамида называется правильной, если её основанием является правильный многоугольник, при этом вершина такой пирамиды проецируется в центр ее основания.
Определение 2. Пирамида называется правильной, если ее основание – правильный многоугольник, а высота проходит через центр основания.
Элементы правильной пирамиды
- Высота боковой грани, проведенная из ее вершины называется апофема. На рисунке обозначена как отрезок ON
- Точка, соединяющая боковые рёбра и не лежащая в плоскости основания, называется вершиной пирамиды (О)
- Треугольники, имеющие общую сторону с основанием и одну из вершин, совпадающую с вершиной, называются боковыми гранями (AOD, DOC, COB, AOB)
- Отрезок перпендикуляра, проведённого через вершину пирамиды к плоскости её основания называется высотой пирамиды (ОК)
- Диагональное сечение пирамиды - это сечение, проходящее через вершину и диагональ основания (AOC, BOD)
- Многоугольник, которому не принадлежит вершина пирамиды, называется основанием пирамиды (ABCD)
Если в основании правильной пирамиды лежит треугольник, четырехугольник и т.д. то она называется правильной треугольной, четырехугольной и т.д.
Треугольная пирамида есть четырехгранник — тетраэдр.
Свойства правильной пирамиды
- боковые ребра равны между собой
- апофемы равны
- боковые грани равны между собой (при этом, соответственно, равны их площади, боковые стороны и основания), то есть они являются равными треугольниками
- все боковые грани являются равными равнобедренными треугольниками
- в любую правильную пирамиду можно как вписать, так и описать около неё сферу
- если центры вписанной и описанной сферы совпадают, то сумма плоских углов при вершине пирамиды равна π, а каждый из них соответственно π/n, где n — количество сторон многоугольника основания
- площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему
- около основания правильной пирамиды можно описать окружность
- все боковые грани образуют с плоскостью основания правильной пирамиды равные углы
- все высоты боковых граней равны между собой
Указания к решению задач. Свойства, перечисленные выше, должны помочь в практическом решении. Если требуется найти углы наклона граней, их поверхность и т. д., то общая методика сводится к разбиению всей объемной фигуры на отдельные плоские фигуры и применение их свойств для нахождения отдельных элементов пирамиды, поскольку многие элементы являются общими для нескольких фигур.
Необходимо разбить всю объемную фигуру на отдельные элементы - треугольники, квадраты, отрезки. Далее, к отдельным элементам применить знания из курса планиметрии, что существенно упрощает нахождение ответа.
Формулы для правильной пирамиды
Формулы для нахождения объема и площади боковой поверхности:
Обозначения:
V - объем пирамиды
S - площадь основания
h - высота пирамиды
Sb - площадь боковой поверхности
a - апофема (не путать с α)
P - периметр основания
n - число сторон основания
b - длина бокового ребра
α - плоский угол при вершине пирамиды
Данная формула нахождения объема может применяться только для правильной пирамиды:
, где
V - объем правильной пирамиды
h - высота правильной пирамиды
n - число сторон правильного многоугольника, который является основанием для правильной пирамиды
a - длина стороны правильного многоугольника
Правильная треугольная пирамида - это пирамида, основанием которой является правильный треугольник, а вершина проецируется в центр основания.
На рисунке обозначены:
ABC - Основание пирамиды
OS - Высота
KS - Апофема
OK - радиус окружности, вписанной в основание
AO - радиус окружности, описанной вокруг основания правильной треугольной пирамиды
SKO - двугранный угол между основанием и гранью пирамиды (в правильной пирамиде они равны)
Важно. В правильной треугольной пирамиде длина ребра (на рисунке AS, BS, CS ) может быть не равна длине стороны основания (на рисунке AB, AC, BC). Если длина ребра правильной треугольной пирамиды равна длине стороны основания, то такая пирамида называется тетраэдром (см. ниже).
Свойства правильной треугольной пирамиды:
- боковые ребра правильной пирамиды равны
- все боковые грани правильной пирамиды являются равнобедренными треугольниками
- в правильную треугольную пирамиду можно как вписать, так и описать вокруг неё сферу
- если центры вписанной и описанной вокруг правильной треугольной пирамиды, сферы совпадают, то сумма плоских углов при вершине пирамиды равна π (180 градусов) , а каждый из них соответственно равен π / 3 (пи делить на 3 или 60 градусов ).
- площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему
- вершина пирамиды проецируется на основание в центр правильного равностороннего треугольника,, который является центром вписанной окружности и точкой пересечения медиан
Формулы для правильной треугольной пирамиды
Формула объема правильной треугольной пирамиды:
где
V - объем правильной пирамиды, имеющей в основании правильный (равносторонний) треугольник
h - высота пирамиды
a - длина стороны основания пирамиды
R - радиус описанной окружности
r - радиус вписанной окружности
Поскольку правильная треугольная пирамида является частным случаем правильной пирамиды, то формулы, которые верны для правильной пирамиды, верны и для правильной треугольной.
Тетраэдр
Частным случаем правильной треугольной пирамиды является тетраэдр.
Тетраэдр - это правильный многогранник (правильная треугольная пирамида) у которой все грани являются правильными треугольниками.
У тетраэдра:
- Все грани равны
- 4 грани, 4 вершины и 6 ребер
- Все двугранные углы при рёбрах и все трёхгранные углы при вершинах равны
Медиана тетраэдра - это отрезок, соединяющий вершину с точкой пересечения медиан противоположной грани (медиан равностороннего треугольника, противолежащего вершине)
Бимедиана тетраэдра - это отрезок, соединяющий середины скрещивающихся рёбер (соединяющий середины сторон треугольника, являющегося одной из граней тетраэдра)
Высота тетраэдра - это отрезок, соединяющий вершину с точкой противоположной грани и перпендикулярный этой грани (то есть является высотой, проведенной от любой грани, также совпадает с центром описанной окружности).
Тетраэдр обладает следующими свойствами:
- Все медианы и бимедианы тетраэдра пересекаются в одной точке
- Эта точка делит медианы в отношении 3:1, считая от вершины
- Эта точка делит бимедианы пополам
Площадь, объем, высота, радиус вписанной и описанной окружности и другие формулы для тетраэдра
Количество просмотров:
Вернуться в раздел Подготовка к экзаменам