Справочник


Определение. Степенью числа а с натуральным показателем n, большим 1, называют выражение аn, равное произведению n множителей, каждый из которых равен а.

Степенью числа а с показателем 1 называют выражение а1, равное а.

По определению:

Запись аn читается так: «а в степени n» или «n-я (энная) степень числа а». Для второй и третьей степеней числа используют специальные названия: вторую степень числа называют квадратом, а третью степень — кубом.

 

Возведение в степень

Нахождение n-й степени числа а называют возведением в n-ю степень.

Пример 1. Возведём число –3 в четвёртую и пятую степени:

(–3)4 = (-3) • (-3) • (-3) • (-3) = 81;

(–3)5 = (-3) • (-3) • (-3) • (-3) • (-3) = –243.

Из свойств умножения следует, что:

  • при возведении нуля в любую степень получается нуль;
  • при возведении положительного числа в любую степень получается положительное число;
  • при возведении отрицательного числа в степень с чётным показателем получается положительное число, а при возведении отрицательного числа в степень с нечётным показателем — отрицательное число.

Пример 2. Возведём число 6,1 в седьмую степень, воспользовавшись калькулятором. Для этого надо выполнить умножение:

6,1 • 6,1 • 6,1 • 6,1 • 6,1 • 6,1 • 6,1.

Калькулятор позволяет выполнять возведение в степень проще, не повторяя основание степени и знак умножения. Для того чтобы возвести число 6,1 в седьмую степень, достаточно ввести число 6,1, нажать клавишу УМНОЖИТЬ и шесть раз нажать клавишу РАВНО . Получим, что 6,17 = 314274,28.

При вычислении значений числовых выражений, не содержащих скобки, принят следующий порядок действий: сначала выполняют возведение в степень, затем умножение и деление, далее сложение и вычитание.

Пример 3. Найдём значение выражения –62 + 64 : (–2)5. Последовательно находим:

1)                   62 = 36;

2)                   (–2)5 = –32;

3)                   64 : (–32) = –2;

4)                   –36 + (–2) = –38.

Пример 4. Найдём множество значений выражения 5 • (–1)n + 1 + 2, где n N.

Если n — нечётное число, то (-1)n + 1 = 1; тогда 5 • (-1)n + 1 + 2 = 5 • 1 + 2 = 7.

Если n — чётное число, то (-1)n + 1 = -1; тогда 5 • (-1)n + 1 + 2 = 5 • (-1) + 2 = -5 + 2 = -3.

Множество значений данного выражения: {-3; 7}.

В рассмотренном примере было указано, что n N. Условимся в дальнейшем такое указание опускать и считать, что если показатель степени содержит переменную, то значениями этой переменной являются натуральные числа.

 

Дисперсия

Степень с натуральным показателем широко используется в естествознании для вычисления различных характеристик. Например, в статистике, для того чтобы узнать, как числа некоторой выборки расположены по отношению к среднему арифметическому этой выборки, используют отклонения, их квадраты и среднее арифметическое квадратов отклонений — дисперсию.

Пример 5. Дана выборка: 4, 6, 7, 8, 10. Среднее арифметическое этой выборки равно 7. Тогда отклонения вариант данной выборки от среднего арифметического равны: 4 – 7 = –3, 6 – 7 = –1, 7 – 7 = 0,8 – 7 = 1, 10 – 7 = 3, т. е. мы получили ещё один набор чисел — отклонения каждой варианты выборки от среднего арифметического. По новой выборке (–3; –1; 0; 1; 3) можно судить о том, насколько близки к среднему арифметическому числа исходного набора. Но поскольку сумма отклонений равна нулю, то и среднее арифметическое этой новой выборки также равно нулю. Поэтому для дальнейших исследований исходного набора находят квадраты отклонений и их среднее арифметическое

 

Полученное число и есть дисперсия исходной выборки.

 

Умножение степеней

Представим произведение степеней а5 и а2 в виде степени:

а5 • а2 = (а • а • а • а • а) • (а • а) = а • а • а • а • а • а • а = а7.

Мы получили степень с тем, же основанием и показателем, равным сумме показателей множителей. Подмеченное свойство выполняется для произведения любых двух степеней с одинаковыми основаниями.

Если а — произвольное число, m и n — любые натуральные числа, то:

аm • аn = аm+ n

Докажем это. Из определения степени и свойств умножения следует, что

 

Доказанное свойство называется основным свойством степени. Оно распространяется на произведение трёх и более степеней. Это нетрудно показать с помощью таких же рассуждений.

Из основного свойства степени следует правило:

  • чтобы перемножить степени с одинаковыми основаниями, надо основание оставить тем же, а показатели степеней сложить.

 

Деление степеней

Представим теперь в виде степени частное степеней а8 и а3, где а ≠ 0. Так как а3 • а5 = а8, то по определению частного а8 : а3 = а5.

Мы получили степень с тем же основанием и показателем, равным разности показателей делимого и делителя. Такое свойство выполняется для частного любых степеней с одинаковыми основаниями, не равными нулю, у которых показатель делимого больше показателя делителя.

Если а — произвольное число, не равное нулю, m и n — любые натуральные числа, причём m > n, то аm : аn = аm — n, где а ≠ 0, m ≥ n

Докажем это. Умножим аm — n на аn, используя основное свойство степени:

am – n • an = a(m – n) + n = am – n + n = am

Из доказанного свойства следует правило:

  • чтобы выполнить деление степеней с одинаковыми основаниями, надо основание оставить тем же, а из показателя делимого вычесть показатель делителя.

 

Степень с нулевым показателем

Мы рассматривали степени с натуральными показателями. Введём теперь понятие степени с нулевым показателем.

Определение.Степенью числа а, где а ≠ 0, с нулевым показателем называется выражение а0, равное 1.

Например, 50 = 1;   (–6,3)0 = 1. Выражение 00 не имеет смысла.

 


Количество просмотров: Счетчик посещений Counter.CO.KZ - бесплатный счетчик на любой вкус!

Есть вопрос или комментарий?..


Ваше имя Электронная почта
Получать почтовые уведомления об ответах:

| Примечание. Сообщение появится на сайте после проверки модератором.


Вернуться в раздел Справочник

Диплом

Рассылка новостей